Международный студенческий научный вестник. Ранговые распределение Модели рангового распределения в экономике

1 По методике измерение и распределение типов стихийных бедствий выполняется на основе данных об ущербе, количестве пострадавших и погибших по типам стихийных бедствий. Затем проектируются меры по предупреждению возможных в будущем стихийных бедствий. Известно, что научным прогнозом и своевременным предупреждения можно снизить экологический ущерб от возможных стихийных бедствий.

До проектирования мер предлагается определять моделированием закономерности распределения по убыванию числа катастроф. Для этого значениям каждого показателя присваивают целочисленные ранги, начиная от нуля. В дальнейшем по значениям показателей с целочисленными рангами получают закономерности их рангового распределения.

Распределения по убыванию числа катастроф значений ущерба, количества пострадавших и погибших определяется по общей для многих процессов формуле


где Y - показатель; r - целочисленный ранг, принимаемый из ряда 0, 1, 2, 3, ...;a 1 ...a 7 - параметры статистической модели, получающие числовые значения для конкретного распределения ущерба, количества пострадавших и погибших.

При этом активности влияния естественно-природного α 1 и техногенного α 2 вмешательства в распределение значений показателя Y = Y 1 +Y 2 вычисляются по формулам α 1 =Y 1 /Y и α 2 = Y 2 /Y. Приспособляемость k человека своим техногенным вмешательством, в том числе и мерами по предупреждению стихийных бедствий, определяется отношением техногенной составляющей общей закономерности ко второй составляющей, то есть по математическому выражению k = Y 2 /Y 1 .

Примеры . По данным идентификацией (1) получены закономерности.

1. Число различных типов стихийных бедствий, происходивших в мире за 30 лет (1962-1992), изменялась по материальному ущербу (табл. 1) по закономерности

Таблица 1. Число катастроф в мире за 30 лет (1962-1992) по материальному ущербу

катастрофы

Расчетные значения (2)

В табл. 1 и других были приняты следующие типы катастроф: ГЛ - голод; ЗМ - заморозки; ЗС - засуха; ЗТ - землетрясения; ИВ - извержения; НД - наводнения; НН - нашествие насекомых; ОП - оползни; ПЖ - пожары; СЛ - снежная лавина; СХ - суховеи; ТШ - тропические штормы; ЦН - цунами; ШТ - штормы; ЭД - эпидемии.


Первая составляющая (2) показывает естественный процесс рангового распределения типов стихийных бедствий, а вторая - стрессовое возбуждение человечества по материальному ущербу, как негативный (знак « + ») отклик на недостаточные действия по предупреждению чрезвычайных ситуаций и устранению последствий прошлых катастроф.

Показатели адекватности модели (2) и других определялись следующим образом. По разности между фактическими и расчетными значениями показателя вычисляется абсолютная погрешность ε по выражению . Относительная погрешность Δ (%) определится из выражения . Из этих остатков выбирается максимальное значение Δ max (по модулю), которое в табл. 1 подчеркнуто. Тогда доверительная вероятность D найденной статистической закономерности будет равна . Из данных табл. 1 видно, что максимальная относительная погрешность формулы (1) равна 52,0 %. При этом известно, что распределения по убыванию значений показателя имеют значительные погрешности в конце ряда. Поэтому последними значениями ряда можно пренебречь, при рангах 7, 8 и 9 число катастроф равно единице. Они составляют 3 х 100 / 241 = 1,24 %. Если их исключить, то максимальная погрешность формулы (2) будет 20,75 %. Доверие к (2) будет не ниже 100 - 20,75 = 79,25 %. Такое доверие позволит применять формулу (2) в ориентировочных расчетах материального ущерба от ожидаемых в будущем катастроф.

Таблица 2. Анализ статистической модели (2)


В табл. 2 приведены результаты расчета обеих составляющих N 1 и N 2 формулы (2), а также значений коэффициентов значимости α 1 и α 2 этих составляющих материального ущерба и коэффициента приспособляемости k человечества (на момент регистрации динамики числа катастроф) к распределению числа катастроф.

Из данных табл. 2 видно, что на рангах 6-9 коэффициент приспособляемости человечества к извержениям, оползням, цунами и заморозкам по показателю материального ущерба стремится к бесконечности.

Человек не может пока преодолеть и пожары при k = 15,00.

2. Число типов стихийных бедствий в мире за 30 лет (1962-1992 гг.), выделяемых по количеству пострадавших, изменяется по статистической закономерности (табл. 3, табл. 4)

Из табл. 4 видно, что стрессовое возбуждение максимальное на голод (4-й ранг).

3. Число типов стихийных бедствий в мире по количеству погибших людей получает закономерность (табл. 5 и табл. 6) по формуле

Таблица 3. Число катастроф в мире за 30 лет (1962-1992) по количеству пострадавших

катастрофы

Расчетные значения (3)

Таблица 4. Анализ статистической модели (3)

Таблица 5. Число катастроф в мире за 30 лет (1962-1992) по количеству погибших

катастрофы

Расчетные значения (4)

Таблица 6. Анализ модели (6) числа катастроф


Из данных табл. 6 видно, что стрессовое возбуждение человечества максимальное на штормы, которые имеют по количеству погибших пятый ранг.

Для доказательства того, что модель типа (1) является устойчивым законом, необходимо, чтобы принятые коэффициенты активности и приспособляемости также изменялись по устойчивым закономерностям.

По данным табл. 6 были получены модели для данных по численности погибших:

коэффициент значимости первой составляющей модели (4) равен

коэффициент значимости второй составляющей ;

коэффициент приспособляемости человечества к стихийным бедствиям по числу погибших людей за 30 лет (1962-1992 гг.) изменялся по формуле

По трем показателям, а их множество может быть большим, можно определить рейтинговое место m r (в данных примерах без учета весовых коэффициентов показателей) каждого типа стихийных (а в будущем и не стихийных) катастроф (табл. 7).

Тип стихийной катастрофы

Материальный ущерб

Количество пострадавших

Количество погибших

ГЛ - голод

ЗМ - заморозки

ЗС - засуха

ЗТ - землетрясения

ИВ - извержения

НД - наводнения

НН - нашествие насекомых

ОП - оползни

ПЖ - пожары

СЛ - снежная лавина

СХ - суховеи

ТШ - тропические штормы

ЦН - цунами

ШТ - штормы

ЭД - эпидемии

Примечание: наиболее опасны наводнения, а безопасны заморозки.

Применение способа рангового анализа у распределений стихийных бедствий по типам позволит расширить классификацию катастроф, в частности, с включением новых типов стихийных бедствий, а в будущем и классов любых типов антропогенных воздействий.

СПИСОК ЛИТЕРАТУРЫ:

  1. Коробкин, В.И. Экология: учебник для вузов / В.И. Коробкин, Л.В. Передельский. - Ростов на Дону: Изд-во «Феникс», 2001.- 576 с.
  2. Мазуркин, П.М. Статистическая экология / П.М. Мазуркин: Учебное пособие. - Йошкар-Ола: МарГТУ, 2004. - 308 с.
  3. Мазуркин, П.М. Геоэкология: Закономерности современного естествознания: Научное изд. / П.М. Мазуркин. - Йошкар-Ола: МарГТУ, 2006. - 336 с.
  4. Мазуркин, П.М. Статистическое моделирование. Эвристико-математический подход / П.М. Мазуркин. - Научное издание. - Йошкар-Ола: МарГТУ, 2001. - 100 с.
  5. Мазуркин, П.М. Математическое моделирование. Идентификация однофакторных статистических закономерностей: Учебное пособие / П.М. Мазуркин, А.С. Филонов. - Йошкар-Ола: МарГТУ, 2006. - 292 с.

Библиографическая ссылка

Мазуркин П.М., Михайлова С.И. РАНГОВОЕ РАСПРЕДЕЛЕНИЕ ТИПОВ СТИХИЙНЫХ БЕДСТВИЙ // Современные наукоемкие технологии. – 2008. – № 9. – С. 50-53;
URL: http://top-technologies.ru/ru/article/view?id=24197 (дата обращения: 26.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Первое, что обращает на себя внимание в царстве документов, – это чрезвычайно быстрый рост его населения.

Этот общеизвестный факт заставляет всерьез задуматься о том, к чему может привести такой рост. Но, может быть, наши опасения напрасны, и в дальнейшем темпы прироста числа документов замедлятся? Пока что статистика утверждает обратное.

Вот как, например, изменялись документальные информационные потоки по химии. В 1732 г все наследие химии было обобщено и опубликовано голландским профессором в книге объемом 1433 страницы. В 1825 г шведский ученый Берцелиус опубликовал все, что было известно по химии, в 8 томах общим объемом 4150 страниц. В настоящее время американский реферативный журнал «Chemical Abstracts», издаваемый с 1907 г, публикует почти всю информацию по химии, при этом первый миллион рефератов был опубликован спустя 31 год с момента основания, второй – спустя 18 лет, третий – через 7 лет, а четвертый – через 4 года!

Примерно такой же характер роста количества документов можно проследить и в других областях науки. Было замечено, что рост документов носит экспоненциальный характер. При этом ежегодный прирост потоков научно-технической информации составляет 7...10%. В настоящее время каждые 10...15 лет происходит удвоение объемов научно-технической информации (НТИ) Кривая роста числа документов, таким образом, может быть описана экспонентой вида

y = Ae kt

где y – сумма знаний, унаследованных от предыдущих поколений, е – основание натуральных логарифмов (е = 2,718...), t – индекс времени (г); A – сумма знаний в начале отсчета (при t = 0), K – коэффициент, характеризующий скорость знаний, эквивалентом которых принимаются потоки научно-технической информации. При t ≈ 10...15 лет у = 2A .

Легко представить себе, что такой характер роста числа научных документов не предвещает нам в будущем, даже ближайшем будущем, ничего хорошего. Леса, превращенные в горы бумаги, в которых тонет беспомощный исследователь...

Однако, как показывает история науки и техники, условия, в которых они развиваются, не являются постоянными, а поэтому механизм экспоненциального роста потоков НТИ часто нарушается. Это нарушение объясняется рядом сдерживающих факторов, в частности войнами, нехваткой материальных и человеческих ресурсов и т.д. В действительности рост числа документов не подчиняется поэтому экспоненциальной зависимости, хотя в определенные периоды развития науки и техники в отдельных областях знаний она проявляется достаточно четко. В чем же причина такого стремительного нарастания потоков документальной информации?



В предыдущих разделах мы обращали внимание на то, что информация играет огромную роль в развитии человеческого общества, поэтому оно сопровождается опережающим по темпам ростом объемов информации. Рост документальных потоков научной информации можно связывать с ростом числа создателей научной информации. Темпы этого роста описываются показательной функцией. Например, в течение последних 50 лет число научных работников в СССР удваивалось каждые 7 лет, в США – каждые 10 лет, в европейских странах – каждые 10...15 лет.

Конечно, темпы роста числа научных работников должны подвергнуться замедлению и достигнуть какой-то более или менее постоянной величины по отношению ко всему количеству работающего населения. В противном случае все население через какое-то время будет занято исследовательскими и опытно-конструкторскими работами, что нереально. Поэтому в будущем следует ожидать замедления темпов роста числа научных документов. В настоящее время эти темпы все еще высоки и внушают потребителям информации тревогу: как хранить и обрабатывать документы, как найти среди них тот, который нужен?

Положение кажется безвыходным: действующий пока в царстве документов закон экспоненциального роста документов резко обострил в нем как «жилищную», так и «транспортную» проблемы.

Однако, как оказывается, здесь существует закон, несколько смягчающий создавшееся положение...

В конце 40-х годов нашего столетия Дж. Ципф, собрав огромный статистический материал, попытался показать, что распределение слов естественного языка подчиняется одному простому закону, который можно сформулировать следующим образом. Если к какому-либо достаточно большому тексту составить список всех встретившихся в нем слов, затем расположить эти слова в порядке убывания частоты их встречаемости в данном тексте и пронумеровать в порядке от 1 (порядковый номер наиболее часто встречающегося слова) до R , то для любого слова произведение его порядкового номера (ранга) / в таком списке и частоты его встречаемости в тексте будет величиной постоянной, имеющей примерно одинаковое значение для любого слова из этого списка. Аналитически закон Ципфа может быть выражен в виде



fr = c ,

где f – частота встречаемости слова в тексте;
r – ранг (порядковый номер) слова в списке;
с – эмпирическая постоянная величина.

Полученная зависимость графически выражается гиперболой. Исследовав таким образом самые разнообразные тексты и языки,

в том числе языки тысячелетней давности, Дж. Ципф для каждого из них построил указанные зависимости, при этом все кривые имели одинаковую форму – форму «гиперболической лестницы», т.е. при замене одного текста другим общий характер распределения не изменялся.

Закон Ципфа был открыт экспериментально. Позднее Б. Мандельброт предложил его теоретическое обоснование. Он полагал, что можно сравнивать письменный язык с кодированием, причем все знаки должны иметь определенную «стоимость». Исходя из требований минимальной стоимости сообщений, Б. Мандельброт математическим путем пришел к аналогичной закону Ципфа зависимости

fr γ = c ,

где γ – величина (близкая к единице), которая может изменяться в зависимости от свойств текста.

Дж. Ципфом и другими исследователями было установлено, что такому распределению подчиняются не только все естественные языки мира, но и другие явления социального и биологического характера: распределения ученых по числу опубликованных ими статей (А. Лотка, 1926 г.), городов США по численности населения (Дж. Ципф, 1949 г.), населения по размерам дохода в капиталистических странах (В. Парето, 1897 г.), биологических родов по численности видов (Дж. Уиллис, 1922 г.) и др.

Самым важным для рассматриваемой нами проблемы является тот факт, что и документы внутри какой-либо отрасли знаний могут распределяться согласно этому закону. Частным случаем его является закон Брэдфорда, непосредственно связанный уже не с распределением слов в тексте, а с распределением документов внутри какой-либо тематической области.

Английский химик и библиограф С. Брэдфорд, исследуя статьи по прикладной геофизике и смазке, заметил, что распределения научных журналов, содержащих статьи по смазке, и журналов, содержащих статьи по прикладной геофизике, имеют общий вид. На основании установленного факта С. Брэдфорд сформулировал закономерность распределения публикаций по изданиям.

Основной смысл закономерности состоит в следующем: если научные журналы расположить в порядке убывания числа статей по конкретному вопросу, то журналы в полученном списке можно разбить на три зоны таким образом, чтобы количество статей в каждой зоне по заданному предмету было одинаковым. При этом в первую зону, так называемую зону ядра, входят профильные журналы, непосредственно посвященные рассматриваемой тематике. Количество профильных журналов в зоне ядра невелико. Вторую зону образуют журналы, частично посвященные заданной области, причем число их существенно возрастает по сравнению с числом журналов в ядре. Третья зона, самая большая по количеству изданий, объединяет журналы, тематика которых весьма далека от рассматриваемого предмета.

Таким образом, при равном числе публикаций по определенной тематике в каждой зоне число наименований журналов резко возрастает при переходе от одной зоны к другой. С. Брэдфорд установил, что количество журналов в третьей зоне будет примерно во столько раз больше, чем во второй зоне, во сколько раз число наименований во второй зоне больше, чем в первой. Обозначим р 1 – число журналов в 1-й зоне, р 2 – во 2-й, р 3 – число журналов в 3-й зоне.

Если a – отношение количества журналов 2-й зоны к числу журналов 1-й зоны, то закономерность, вскрытая С. Брэдфордом, может быть записана так:

P 1: P 2: P 3 = 1: a : a 2

P 3: P 2 = P 2: P 1 = a .

Эту зависимость называют законом Брэдфорда.

Б. Викери уточнил модель С. Брэдфорда. Он выяснил, что журналы, проранжированные (выстроенные) в порядке уменьшения в них статей по конкретному вопросу, можно разбить не на три зоны, а на любое нужное число зон. Если периодические издания расположить в порядке уменьшения в них количества статей по конкретному вопросу, то в полученном списке можно выделить ряд зон, каждая из которых содержит одинаковое количество статей. Примем следующие обозначения х – количество статей в каждой зоне. Т x – количество журналов, содержащих х статей, Т 2x – количество журналов, содержащих 2х статей, т.е. сумма наименований журналов в 1-й и во 2-й зонах, Т 3x – количество журналов, содержащих 3х статей, т.е. сумма наименований журналов в 1-й, 2-й и в 3-й зонах, Т 4x – количество журналов, содержащих 4х статей.

Тогда эта закономерность будет иметь вид

T x : T 2x : T 3x : T 4x : ... = 1: a : a 2: a 3: ...

Данное выражение называют законом Брэдфорда в толковании Б. Викери.

Если закон Ципфа характеризует многие явления социального и биологического характера, то закон Брэдфорда – это специфический случай распределения Ципфа для системы периодических изданий по науке и технике.

Из этих закономерностей можно извлечь выводы огромной практической пользы.

Так, если расположить какие-либо периодические издания в порядке убывания количества статей по определенному профилю, то, согласно Брэдфорду, их можно разбить на три группы, содержащие равное количество статей. Пусть мы отобрали группу из 8 наименований журналов, занимающих первые 8 мест в полученном списке. Тогда для того, чтобы удвоить количество статей по интересующему нас профилю, нам придется добавить к имеющимся 8 еще 8 · a наименований журналов. Если a = 5 (это значение найдено экспериментальным путем для некоторых тематических областей), то число этих наименований равно 40. Тогда общее число наименований периодических изданий составит 48, что, конечно, значительно больше, чем 8. При попытке же получить втрое большее количество статей нам придется охватить уже 8 + 5 · 8 + 5 2 · 8 = 256 наименований! Из них треть интересующих нас статей сосредоточена всего в 8 журналах, т.е. статьи распределяются по наименованиям журналов неравномерно. С одной стороны наблюдается концентрация значительного количества статей по определенной тематике в нескольких профильных журналах, с другой – рассеяние этих статей в огромном количестве изданий по смежной или далекой от рассматриваемой тематике, в то время как на практике необходимо выявить основные источники по интересующей нас области научно-технических знаний, а не случайные издания.

Закономерности концентрации и рассеяния научно-технической информации в царстве документов позволяют выбирать именно те издания, которые с наибольшей вероятностью содержат публикации, соответствующие определенному профилю знаний. В массовом процессе информационного обеспечения в масштабах страны использование этих закономерностей позволяет сократить для народного хозяйства огромные расходы.

Существующее рассеяние публикаций нельзя оценивать только как вредное явление. В условиях рассеяния улучшаются возможности для межотраслевого обмена информацией.

Попытка сконцентрировать все публикации одного профиля в нескольких журналах, т.е. не допустить их рассеяния, будет иметь отрицательные последствия, не говоря уж о том, что точное отнесение документа к тому или иному профилю не всегда представляется возможным.

Результаты проверок закона рассеяния Брэдфорда, как показал С. Брукс, имеют различные степени соответствия. Несмотря на внесенные поправки, модель Брэдфорда не отражает разнообразия реальных распределений. Это несоответствие можно объяснить тем, что Брэдфорд сделал свои выводы, основываясь на выборе массивов, относящихся только к узким тематическим областям.

Огромная заслуга Дж. Ципфа и С. Брэдфорда состоит в том, что они положили начало строгому исследованию документальных информационных потоков (ДИП), которые представляют собой совокупности научных документов-публикаций и неопубликованных материалов (например, отчетов по научно-исследовательским и опытно-конструкторским работам). Дальнейшие исследования, среди которых видное место занимают работы советского специалиста в области информатики В.И. Горьковой, показали, что можно определять не только количественные параметры совокупностей научных документов, но и совокупностей элементов признаков научных документов: авторов, терминов, индексов классификационных систем, наименований изданий, т.е. наименований элементов, характеризующих содержание научных документов. Например, можно расположить журналы в порядке убывания числа печатающихся в них авторов, в порядке убывания средней величины публикующихся в них статей или упорядочить совокупность документов по любому ее элементу.

Упорядоченность задается ранжированием (порядком размещения) наименований элементов по частоте их появления в порядке ее убывания. Такая упорядоченная совокупность наименований элементов называется ранговым распределением. Распределения, которые в свое время изучал Ципф, – это типичные примеры ранговых распределений. Оказалось, что вид рангового распределения, его строение характеризуют ту совокупность документов, к которой относится данное ранговое распределение. Выяснилось, что при построении ранговые распределения в большинстве случаев имеют форму закономерности Ципфа с поправкой Мандельброта:

fr γ = c .

При этом коэффициент γ – величина переменная. Постоянство коэффициента γ сохраняется только на среднем участке графика распределения. Этот участок принимает форму прямой, если график вышеприведенной закономерности построить в логарифмических координатах. Участок распределения с γ = const называется центральной зоной рангового распределения (значение аргумента на этом участке изменяется от Inr 1 , до Inr 2). Значениям аргумента от 0 до Inr 1 соответствует зона ядра рангового распределения, а значениям аргумента от Inr 2 до Inr 3 – так называемая зона усечения.

Какой же смысл заложен в существовании трех явно различаемых зон ранговых распределений? Если последнее относится к терминам, составляющим какую-либо область знании, то ядерная зона, или зона ядра рангового распределения, содержит наиболее общеупотребительные, общенаучные термины. Центральная зона содержит термины, наиболее характерные для данной области знаний, которые в совокупности выражают ее специфичность, отличие от других наук, «охватывают ее основное содержание». В зоне усечения же сосредоточены термины, сравнительно редко употребляющиеся в данной области знаний.

Таким образом, основа лексики какой-либо области знаний сосредоточена в центральной зоне рангового распределения. При помощи терминов ядерной зоны эта область знаний «стыкуется с более общими областями знаний», а зона усечения играет роль авангарда, как бы «нащупывающего» связи с другими отраслями науки. Так, если несколько лет назад в ранговом распределении терминов тематической области «Обработка металлов» встретился бы термин «лазеры», то ввиду его низкой встречаемости он, наверняка, попал бы именно в зону усечения: связи между лазерной техникой и обработкой металлов еще только «нащупывались». Однако сегодня этот термин, без сомнения, попал бы в центральную зону, что отразило бы уже его достаточно высокую встречаемость и, следовательно, устойчивую связь лазерной техники с обработкой металлов.

График рангового распределения наполнен глубоким смыслом: ведь по относительной величине той или иной зоны на графике можно судить о характеристиках всей области знаний. График с обширной ядерной зоной и малой зоной усечения относится к достаточно широкой и скорее всего консервативной области знаний. Для динамичных отраслей науки характерна увеличенная зона усечения. Малая величина ядерной зоны может говорить об оригинальности области знаний, к которой относится построенное ранговое распределение и т.д. Так, на основании анализа рангового распределения оказалось возможным дать качественные оценки документальным информационным потокам в соответствии с теми отраслями, науки, где они формировались. Царство документов приобретает очертания системы, в которой элементы взаимосвязаны, а закономерности, управляющие этими связями, могут быть изучены!

Как информация стареет...

Старение... Смысл этого понятия, не требует объяснений, оно хорошо знакомо каждому. Стареет наша планета, стареют деревья. Стареют вещи и люди, которым они принадлежат. Стареют и документы. Желтеют листы книг, выцветают буквы, разрушаются обложки. Но что это? Студент, отмахиваясь в библиотеке от предлагаемой ему книги, пренебрежительно замечает: «Она уже устарела!», хотя книга с виду еще совершенно новая! Никакого секрета здесь, конечно, нет. Книга нова, однако информация, которая в ней содержится, могла устареть. Применительно к документам старение понимается не как физическое старение носителя информации, а как довольно сложный процесс старения содержащейся в нем информации. Внешне этот процесс проявляется в утрате учеными и специалистами интереса к публикациям с увеличением времени, прошедшего со дня их издания. Как показало обследование 17 библиотек, проведенное одним из отраслевых органов информации, 62% обращений приходится на журналы, возраст которых не превышает 1,5 года; 31% обращений – на журналы возрастом 1,5...5 лет; 6% – на журналы возрастом от 6 до 10 лет; 7% – на журналы более чем 10-летнего возраста. К вышедшим сравнительно давно публикациям обращаются гораздо реже, что дает повод для утверждения об их старении. Какие же механизмы управляют процессом старения документов?

Один из них непосредственно связан с кумуляцией, агрегированием научной информации. Часто материал, на изложение которого сто лет назад требовался целый курс лекций, теперь можно объяснить за несколько минут с помощью двух-трех формул. Соответствующие курсы лекций безнадежно стареют: ими никто уже не пользуется.

После получения более точных стареют приблизительные данные, а следовательно, и документы, в которых они опубликованы. Поэтому, когда говорят о старении научной информации, чаще всего имеют в виду именно ее уточнение, более строгое, сжатое и обобщенное изложение в процессе создания новой научной информации. Это возможно благодаря тому, что научная информация обладает свойством кумулятивности, т.е. допускает более краткое, обобщенное изложение.

Иногда старение документальной информации имеет другой механизм: объект, описанием которого мы располагаем, с течением времени изменяется настолько, что информация о нем становится неточной. Так стареют географические карты: на смену пустыням приходят пастбища, возникают новые города и моря.

Процесс старения можно рассматривать и как утрату информацией практической полезности для потребителя. Это означает, что он уже не может пользоваться ею для достижения стоящих перед ним целей.

И, наконец, этот процесс может быть рассмотрен с позиций изменения тезауруса человека. С этих позиций одна и та же информация может быть «устаревшей» для одного человека и «неустаревшей» для другого.

Степень старения документальной информации неодинакова для разных видов документов. На скорость ее старения влияют в разной степени очень много факторов. Особенности старения информации в каждой области науки и техники не могут быть выведены на основе абстрактных соображений или усредненных данных статистики – они органически связаны с тенденциями развития каждой отдельной отрасли науки и техники.

Для того чтобы как-то количественно оценить скорость старения информации, библиотекарь Р. Бартон и физик Р. Кеблер из США по аналогии с периодом полураспада радиоактивных веществ ввели «полупериоды жизни» научных статей. Полупериод жизни – это время, в течение которого была опубликована половина всей используемой в настоящее время литературы по какой-либо отрасли или предмету. Если полупериод жизни публикаций по физике равен 4,6 года, то это означает, что 50% всех ныне используемых (цитируемых) публикаций по этой отрасли имеют возраст не более 4,6 года. Вот какие результаты получили Бартон и Кеблер: для публикаций по физике – 4,6 лет, физиологии – 7,2, химии – 8,1, ботанике – 10,0, математике – 10,5, геологии – 11,8 лет. Однако, хотя свойство старения информации и носит объективный характер, но оно не раскрывает внутреннего процесса развития данной области знания и имеет скорее описательный характер. Поэтому к выводам о старении информации следует относиться очень осторожно.

Тем не менее, даже приблизительная оценка скорости старения информации и документов, ее содержащих, имеет огромную практическую ценность: она помогает держать в поле зрения только ту часть царства документов, в которой, вероятнее всего, находятся документы, несущие основную информацию о данной науке. Это важно не только для работников научно-технических библиотек и органов научно-технической информации, но и для самих потребителей НТИ.

Выход в автоматизации?

Лекция 5.

технологияРАНГОВогоАНАЛИЗа

ТЕХНОЦЕНОЗОВ

Вводные замечания

Ранговый анализ как основной инструмент техноценологического метода исследования больших технических систем определенного класса, базируется на трех основаниях: технократическом подходе к окружающей реальности, восходящем к третьей научной картине мира; началах термодинамики; негауссовойматематической статистике устойчивых безгранично делимых распределений.

Центром третьей научной картины мира представляется фундаментальное понятие, дополняющее принципиально новым стратификационным уровнем онтологическое описание окружающей реальности. Это техноценоз, главной отличительной чертой которого является специфика связей между техническими элементами-особями. В техноценозах сегодня видится прообраз будущей техносферы, которая по сложности организации и скорости эволюции превзойдет порождающую ее биологическую реальность.

Специфика техноценозов состоит в методологических основаниях их исследования. Техноценозы не поддаются описанию ни традиционными методами гауссовой математической статистики, оперирующей понятиями среднего и дисперсии как информативно насыщенными свертками больших массивов статистической информации, ни лежащими в основе редукционизма имитационными моделями. Чтобы корректно описать техноценоз, необходимо постоянно оперировать выборкой в целом, как бы велика она ни была, что предполагает построение видовых и ранговых распределений, теоретическая основа которых лежит в области негауссовой математической статистики устойчивых безгранично делимых распределений.

Методики построения видовых и ранговых распределений и их последующее использование в целях оптимизации техноценоза составляют основной смысл рангового анализа, содержание и технология которого представляют собой, по сути, новое фундаментальное научное направление, сулящее большие практические результаты.

Целевая установка лекции – подробно изложить методологию рангового анализа, систематизировать его технологию, включающую процедуры описания, обработки статистики, построения видовых и ранговых распределений, а также номенклатурной и параметрической оптимизации техноценозов.

5.1. Методикапостроения ранговых распределений

В основе рангового анализа лежит весьма сложный математический аппарат. Однако, как и в любой фундаментальной теории, здесь имеется определенный вполне доступный уровень решения задач, фактически граничащий с инженерной методологией. Глубокая теоретическая проработка, всестороннее философское осмысление и многократное апробирование на практике в самых различных областях человеческой деятельности позволяют считать ранговый анализ вполне надежным и, как мы теперь видим, единственным эффективным средством решения задач определенного класса (рис. 5.1).

Как представляется, ранговый анализ, позволяя решать задачи оптимального построения техноценозов, занимает своего рода промежуточное положение между имитационным модели-

рованием,спомощьюкоторогоосуществляетсяэффективное проектирование отдельных видов техники, и методологией исследования операций, применяемой в настоящее время для решения проблем геополитического и макроэкономического планирования. В этой связи представляется важным отметить два момента. Во-первых, отсутствие достаточно глубоко разработанной специальной математической методологии делает аппарат исследования операций весьма ненадежным при решении задач соответствующего макроуровня и приводит, с одной стороны, к многочисленным безрезультатным попыткам применения имитационного моделирования в сфере геополитики и макроэкономики, а с другой, – порождает недоверие к данной методологии со стороны большинства практиков, которые до сих пор предпочитают в большей мере полагаться в этих вопросах на свою интуицию.

Во-вторых, все попытки выдвигать требования, основанные на макропрогнозах, непосредственно разработчикам отдельных видов техники либо политика последних, заключающаяся в полном игнорировании геополитических и макроэкономических процессов, с одинаковым успехом приводят к провалу. Думается, именно техноценологическая методология может разрешить проблему органической связи между крайними уровнями современных технических задач (рис. 5.1).

В рамках лекции, безусловно, нет возможности подробно разобрать техноценологический подход во всей его глубине. Мы и не ставим перед собой такую задачу. Однако в первом приближении (как говорится, на инженерном уровне) рассмотреть ранговый анализ представляется возможным.

Итак, ранговый анализ включает следующие этапы-процедуры:

1. Выделение техноценоза.

2. Определение перечня видов в техноценозе.

3. Задание видообразующих параметров.

4. Параметрическое описание техноценоза.

5. Построение табулированного рангового распределения.

6. Построение графического рангового видового распределения.

7. Построение ранговых параметрических распределений.

8. Построение видового распределения.

9. Аппроксимация распределений.

10. Оптимизация техноценоза.

Обратим внимание на одну терминологическую особенность. Дело в том, что термин «ранговый анализ», хотя и стал уже традиционным, не совсем точен. Правильнее было бы пользоваться термином «ранговый анализ и синтез», т.к. в десяти перечисленных процедурах имеются операции как анализа, так и синтеза. Однако не будем вводить новых понятий и ограничимся существующим, толкуя его расширительно (аналогично терминам «корреляционный анализ», «регрессионный анализ», «фактор-анализ» и др.).

Рассмотрим процедуры рангового анализа более подробно.

1. Выделение техноценоза

Первая процедура трудно формализуется из-за проблем, которые в техноценологической теории называют конвенционностью границ и фрактальностью видообразования (в совокупности приводящими к трансцендентности техноценозов), следствием чего являются ограниченность и зависимость реально существующих техноценозов. Не вдаваясьв теоретические дебри, сформулируем лишь ряд рекомендаций по выделению техноценоза, которые непосредственно следуют из его определения.

Во-первых, техноценоз должен быть локализован (отграничен) в пространстве и времени. Эта операция требует от исследователя некоторой решительности, ибо он должен понимать, что абсолютно точного выделения техноценозаникому и никогда сделать не удастся. Кроме того, техноценоз постоянно изменяется («живет», эволюционирует), поэтому исследовать его надо без промедления. Принципиальным является также и то, что в техноценозе должно быть представлено значительное количество (тысячи, десятки тысяч) отдельных технических изделий различных видов (изготовленных по разной технической документации), не связанных друг с другом сильными связями. То есть техноценоз – это не отдельное изделие, а их многочисленная совокупность.

Во-вторых, в техноценозе должна явно просматриваться единая инфраструктура, в которую входят системы управления и всестороннего обеспечения функционирования. Самое главное – в техноценозе должна наличествовать и четко формулироваться единая цель, заключающаяся, как правило, в получении наибольшего положительного эффекта при наименьших затратах. Безусловно, среди элементов техноценоза может иметь место конкуренция, однако и она должна быть направлена на достижение общей цели. В этом смысле техноценозами, как правило, не могут считаться цеха предприятия, либо два-три завода, не связанных между собой системой управления, либо город в целом. Нельзя считать техноценозом и несколько взаимосвязанных предприятий, если они составляют лишь часть системы. Если говорить о группировках войск, то техноценозами являются дивизия, армия, фронт, однако, отдельно взятые войска связи фронта или армейская авиация (как и любой другой род войск) таковыми не являются.

Выделение техноценоза сопровождается его описанием. Рекомендуется создать для этого специальную базу данных, включающую максимально систематизированную и стандартизированную, достаточно полную и в то же время без излишних частностей информацию о видах и особях техноценоза. Информация структурируется по оргштатным подразделениям. Доступ к ней должен быть, по возможности, автоматизирован, необходимо предусмотреть процедуры ее анализа и обобщения в интерактивном режиме. При этом следует максимально использовать возможности компьютерной техники (в частности, стандартные приложения Windows: Access, Excel, Fox-pro и др.).

2. Определение перечня видов

Эта процедура рангового анализа так же сложна и трудноформализуема. Суть ее заключается в определении полного перечня видов техники в уже выделенном техноценозе. Делается это путем анализа разработанной информационной базы.

Как мы уже знаем, вид техники выделяется как единица, на которую имеется отдельная конструкторско-технологическая документация. Однако и здесь есть свои нюансы. Дело в том, что большинство современных технических изделий состоят из других изделий, на которые, в свою очередь, также имеется своя документация. Следовательно, нужно исходить из того, что вид техники должен быть функционально законченным, относительно независимым. В этом смысле видом техники может быть признана лопата, а процессорный блок компьютера – нет. Лопата может выполнять свои функции (копать землю), а процессорный блок, будучи взят отдельно, никому не нужен.

Сложность заключается и в том, что всегда одновременно существует множество модификаций одного и того же вида техники, и в какой момент из очередной модификации возникает новый вид, определить очень не просто. Ясно, что один вид от другого должен отличаться существенно. Критерием такого отличия является либо отличие одного из важнейших классификационных параметров назначения (мощности, скорости, напряжения, частоты, дальности и др.), либо наличие в конструкции принципиально нового функционально важного узла, блока, агрегата (двигателя, генератора, навесного оборудования, транспортной базы, шасси, кузова и др.).

По опыту исследования техноценозов (в различных областей человеческой деятельности), в перечне видов рекомендуется иметь двести-триста наименований (при общем количестве технических изделий-особей до десятков тысяч единиц). Составляя перечень, важно активно использовать существующие стандартные номенклатуры, классификации, оргштатные структуры, требования, нормали, технические описания и др. Однако в любом случае следует стремиться к тому, чтобы перечень видов был, с одной стороны, исчерпывающим, а с другой, – равномерным с точки зрения детализации по модификациям. Имеется ввиду, что не должно быть такого положения, когда какой-то из видов представлен лишь одной модификацией, а другой – десятью.

Выделенный перечень видов должен быть зафиксирован в отдельном списке и многократно перепроверен различными специалистами.

3. Задание видообразующих параметров

Выполняя эту процедуру рангового анализа, в качестве видообразующих рекомендуется задавать несколько функционально значимых для техноценоза, физически измеряемых и доступных для исследования параметров. Желательно, чтобы они были комплексными и в совокупности представляли группу, достаточно полную для качественного описания техноценоза с точки зрения его конечной цели функционирования. Такими параметрами могут быть стоимость, энергетическая мощность, сложность структуры (если ее можно описать), надежность, живучесть, численность обслуживающего персонала, массогабаритные показатели, топливная экономичность и др. Как видим, любой из перечисленных параметров весьма емко характеризует технические изделия. Наиболее важными из них представляются стоимость, энергетическая мощность и количество обслуживающего персонала (безусловно, включая и тот персонал, который осуществляет всестороннее обеспечение функционирования данного вида техники). Представляется, что именно эти параметры наиболее емко отражают энергию, овеществленную в то или иное техническое изделие при его изготовлении.

4. Параметрическое описание техноценоза

После задания видообразующих параметров необходимо определить и внести в базу данных техноценоза конкретные значения этих параметров, которыми обладает каждый вид техники из его состава. Это длительная и кропотливая статистическая работа, однако вполне доступная для каждого исследователя. Следует лишь стремиться к тому, чтобы была применена единая система измерения, т.е. для разных видов параметр должен определяться в одних и тех же единицах (килограммах, киловаттах, рублях по одному курсу, человеко-часах и др.). В создаваемой информационной базе техноценоза, естественно, должны изначально предусматриваться соответствующие поля для последующего внесения значений конкретных параметров.

Работа по созданию информационной базы техноценоза завершается после того как будет создана многомерная электронная таблица (база данных, включающая банк данных и систему управления), которая вбирает в себя систематизированную в определенном порядке (по укрупненным видам техники, подразделениям техноценоза, граничным значениям параметров или другим признакам) информацию о видах технических изделий, входящих в техноценоз, и значениях видообразующих параметров, которыми характеризуется каждый из этих видов.

Ключевым параметром, о котором мы пока не говорили, но который обязательно должен присутствовать в сформированной базе данных, причем на первом месте, является количество единиц техники каждого из видов, которым они представлены в техноценозе. Мы знаем, что группа технических изделий одного вида в составе техноценоза называется популяцией, а их численность – мощностью популяции.

Здесь полезным будет еще раз напомнить о принципиальной разнице между видом и особью. Вид – это абстрактное объективированное понятие, по сути, наше внутреннее представление об облике технического изделия, сформированное на основе знаний и опыта. Вид мы именуем маркой или образцом техники (автомобиль ЗИЛ-131, электростанция ЭСБ-0,5-ВО, большая саперная лопата, космический корабль «Прогресс» и др.). В составе исследуемого техноценоза функционирует техническая особь, например конкретный автомобиль (марка – ЗИЛ-131, шасси – № 011337, заводской номер двигателя – 17429348, пробег на данный момент – 300 тыс. км, водитель – Иванов, на левом борту кузова – грязное масляное пятно). Всего в техноценозе в данный момент наличествует 150 автомобилей марки ЗИЛ-131. Таким образом, в базе данных у нас будет в каком-то месте фигурировать запись: вид – автомобиль ЗИЛ-131; предназначение – перевозка грузов; количество в техноценозе (мощность популяции) – 150 единиц; стоимость – 10 тыс. долларов; масса – 5 тонн и т.д.

5. Построение табулированного рангового

распределения

Первые четыре процедуры завершают так называемый информационный этап рангового анализа. Следующий, аналитический этап, по сути, сводится к построению на основе информационной базы данных ранговых и видовых распределений техноценоза. Исходным здесь является табулированное ранговое распределение.

Вообще под ранговым распределением понимается распределение Ципфа в ранговой дифференциальной форме, являющееся результатом аппроксимации полученной в процедуре упорядочения видов техноценоза невозрастающей последовательности значений параметра, поставленных в соответствие рангу. В качестве параметра может рассматриваться численность, которой представлены виды в техноценозе (мощность популяции). В этом случае распределение называется ранговым видовым. А может фигурировать какой-либо из видообразующих параметров – тогда распределение будет ранговым параметрическим. В технологии построения распределений есть существенная специфика, однако об этом чуть позже. Ранг вида или особи есть комплексная характеристика, определяющая их место в упорядоченном распределении. Ранжирование имеет глубокое энергетическое обоснование и фундаментальное философское значение. Однако не будем вдаваться в детали и скажем лишь, что для нас ранг – это номер вида по порядку в некотором распределении.

Табулированное ранговое распределение объединяет в себе всю статистику о техноценозе, значимую с точки зрения техноценологического подхода вообще. По форме это таблица. Ниже представлен вариант данного распределения (табл. 5.1). Как видим, первую строчку таблицы занимает запись о самом многочисленном видетехники (в данном случае анализировалась электроэнергетическая инфраструктура группировки войск, а в качестве видов рассматривались электротехнические средства). На второе место поставлена вторая по численности электростанция и так далее вплоть до уникальных для данного техноценоза видов, которых всего по единице.

Таблица 5.1

Пример табулированного рангового распределения техноценоза

Ранг

Вид ЭТС

Количество в группировке, ед.

Видообразующий параметр

м ощность, кВт

с тоимость, $

м асса, кг

……

АБ-0,5-П/30

2349

……

ЭСБ-0,5-ВО

1760

……

АБ-1-О/230

1590

……

АБ-1-П/30

1338

……

ЭСБ-1-ВО

1217

1040

……

ЭСБ-1-ВЗ

1170

……

АБ-2-О/230

1093

1500

……

АБ-2-П/30

1540

……

АБ-4-Т/230

1990

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

ЭСД-100-ВС

85000

3400

……

ЭД200-Т400

120000

4200

……

ЭД500-Т400

250000

6700

……

ЭД1000-Т400

1000

340000

9300

……

ПАЭС-2500

2500

500000

13700

……

Существенной для нас является закономерность: чем меньше численность вида в техноценозе, тем выше его основные видообразующие параметры. И хотя кое-где имеются отклонения от этой закономерности, общая тенденция очевидна. И в этом находит свое проявление один из фундаментальнейших законов природы.

6. Построение графического рангового

видового распределения

Ранговое видовое распределение может быть изображено в графической форме. Оно представляет собой зависимость количества технических особей, которым представлен вид в техноценозе, от ранга (рис. 5.2 – для примера, приведенного в табл. 5.1). По сути, график рангового видового распределения есть совокупность точек, однако для наглядности на рисунке изображены также и гладкие аппроксимирующие кривые. Но о них несколько позже.


Каждой точке графика соответствует определенный вид техники.При этом абсцисса на графике–ранг, а ордината–число особей, которым этот вид представлен в техноценозе. Все данные берутся из табулированного распределения.

7. Построение ранговых параметрических распределений

В ходе рангового анализа техноценоза по табулированному распределению строятся также графики ранговых распределений по каждому из видообразующих параметров. Однако здесь прослеживается определенная специфика, заключающаяся в том, что если в ранговом распределении ранжируются виды, то в параметрическом – особи. На рисунке 5.3 приведен график параметрического распределения по мощности (в киловаттах) для примера, приведенного в таблице 5.1. Так как в техноценозах могут насчитываться десятки тысяч технических особей, то построить график параметрического распределения в одних осях для всего техноценоза не представляется возможным. Для наглядности его делят на фрагменты с соответствующим масштабом.


Как мы уже отметили, в ранговом параметрическом распределении каждой точке соответствует не вид, а особь. Первый ранг присваивается особи, имеющей наибольшее значение параметра, второй – особи, имеющей наибольшее значение параметра среди особей, кроме первой, и так далее. Здесь необходимо сделать ряд замечаний. Во-первых, как нам теперь понятно, ранг на рисунке 5.3 (он называется параметрическим) не соответствует рангу (видовому) на рисунке 5.2. Теоретически между ними имеется связь, однако она чрезвычайно сложна. Во-вторых, т.к. в пределах вида мы принимаем значение видообразующего параметра одним и тем же, то на графике параметрического распределения все особи этого вида будут изображены точками с одинаковыми ординатами. Количество этих точек будет равно количеству особей данного вида в техноценозе. Сам жеграфик состоит как бы из горизонтальных отрезков различной длины. В-третьих, виды на ранговом видовом распределении и особи на ранговом параметрическом, имеющие одинаковые ординаты, ранжируются произвольно. В-четвертых, ранжировка особей по различным параметрам, хотя в целом и схожа, однако точно никогда не соответствует одна другой, что также важно учитывать, чтобы не ошибиться. У каждого параметрического распределения свой ранг.

8. Построение видового распределения

Среди распределений рангового анализа особое место занимает видовое. Есть мнение, что оно является наиболее фундаментальным. Имеются теоретическое обоснование и эмпирическое подтверждение тому, что, с одной стороны, видовое и ранговое видовое есть взаимообратные формы одного распределения, а с другой, – что бесконечная совокупность (континуум) ранговых параметрических распределений техноценоза математически свертывается в одно видовое.

По определению, под видовым понимается безгранично делимое распределение, устанавливающее в непрерывной или дискретной форме упорядоченную взаимосвязь между множеством возможной численности особей техноценоза и количеством видов данных особей, реальнопредставленных в техноценозе фиксированной численностью.

Видовое распределение в графической форме (рис. 5.4) строится по табулированному распределению. На рисунке показано распределение (которое, строго говоря, является совокупностью точек) для примера, приведенного ранее в таблице 5.1. Ясно, что его, как и ранговое параметрическое, практически невозможно изобразить в одних осях, поэтому обычно видовое распределение изображают фрагментами с удобным масштабом (один из таких фрагментов показан на рис. 5.4).


Еще раз уточним, как строится видовое распределение. Итак, по оси абсцисс откладывается возможная численность особей одного вида (возможная мощность популяции) в техноценозе. Очевидно, что особей может быть одна, две, три и т.д. вплоть до цифры, соответствующей максимальной по объему популяции. Иными словами, это ряд натуральных чисел в порядке возрастания. По оси ординат откладывается количество видов, представленных в анализируемом техноценозе данной численностью. Как видно из табулированного рангового распределения, одной особью у нас представлено четыре вида (ЭД200-Т400, ЭД500-Т400, ЭД1000-Т400, ПАЭС-2500). Поэтому мы откладываем точку с координатами (1,4). Двумя особями представлено три вида – точка (2,3); тремя особями два вида – точка (3,2); четырьмя, пятью, семью и восемью особями представлено по одному виду – точки (4,1); (5,1); (7,1); (8,1), а вот шестью особями не представлен ни один вид, поэтому среди точек графика имеется точка с координатами (6,0). Последняя точка имеет координаты (2349,1).

Сделаем еще несколько важных замечаний. Во-первых, все точки с нулевыми ординатами должны учитываться в последующей процедуре аппроксимации. Во-вторых, теоретически в видовом распределении заложена фундаментальная тенденция: чем больше численность в техноценозе (больше цифра по оси абсцисс), тем меньше разнообразие видов (меньше количество видов по оси ординат). Это закон природы. Однако в отличие от ранговых распределений (которые всегда убывающие) в видовом распределении не производится ранжирование, поэтому на его графике присутствуют точки, которые как бы аномально отклоняются от сформулированного выше правила. На рисунке 5.4 такие точки видны (например, (6,0)). Там, где имеется сгущение аномально отклоненных точек (как в ту, так и в другую сторону), мы фиксируем так называемые зоны номенклатурных нарушений в техноценозе.

Попробуем разобраться, что означают аномальные отклонения в видовом распределении (при этом вспомним закон оптимального построения техноценозов). Если точки отклоняются ниже некоторой гладкой аппроксимирующей кривой, то это означает, что в аномальной зоне номенклатурного ряда техноценоза отмечается завышенная унификация техники. А мы знаем, что любая унификация приводит к снижению функциональных показателей, т.е. эта техника недостаточно надежна, ремонтопригодна, хуже массогабаритные показатели и т.д. Если же точки отклоняются выше кривой, то здесь неоправданно большое разнообразие техники, что непременно скажется (в худшую сторону) на функционировании обеспечивающих систем (труднее доставать запчасти, готовить обслуживающий персонал, подбирать инструмент и т.д.) В любом случае, отклонение – это аномалия.

В заключение отметим, что для наглядности иногда видовые распределения строят в виде гистограмм, однако никакого теоретического значения это не имеет.

9. Аппроксимация распределений

Как мы уже отмечали, строго математически каждое распределение в графической форме представляет собой совокупность точек, получаемых по эмпирическим данным:

(x 1, y 1); (x 2 , y 2); …; (x i , y i); …; (x n , y n), (5.1)

где i –формальный индекс;

n – общее количество точек.

Точки – результат анализа табулированного рангового распределения техноценоза. Для каждого из распределений имеется свое число точек (что есть абсцисса в распределении, а что ордината, мы уже знаем). С точки зрения последующей оптимизации техноценоза большое значение имеет аппроксимация эмпирических распределений. Ее задача заключается в подборе аналитической зависимости, наилучшим образом описывающей совокупность точек (5.1). Мы задаемв качестве стандартной формы гиперболическое аналитическое выражение вида

(5.2)

где А и α – параметры.

Выбор формы (5.2) объясняется традиционно сложившимся подходом среди исследователей, занимающихся ранговым анализом. Безусловно, данная форма далеко не самая совершенная, однако она обладает неоспоримым достоинством – сводит задачу аппроксимации к определению всего двух параметров: А и α . Решается эта задача (также традиционно) методом наименьших квадратов.

Суть метода заключается в отыскании таких параметров аналитической зависимости (5.2) А и α , которые минимизируют сумму квадратов отклонений реально полученных в ходе рангового анализа техноценоза эмпирических значений y i от значений, рассчитанных по аппроксимационной зависимости (5.2), т.е.:

(5.3)

Известно, что решение задачи (5.3) сводится к решению системы дифференциальных уравнений (для (5.2) – двух с двумя неизвестными):

Ниже приводится текст программы:

В итоге после аппроксимации мы получаем двухпараметрическую зависимость вида (5.2) для каждого из распределений. На этом собственно аналитическая часть рангового анализа заканчивается.

5.2. Оптимизация техноценоза на основе

ранговыхраспределений

Ранговый анализ никогда не заканчивается с определением соответствующих распределений техноценоза. За ним всегда следует оптимизация, т. к. нашей главной задачей всегда является определение направлений и критериев улучшения существующего техноценоза. Оптимизация является одной из сложнейших проблем техноценологической теории. Этому направлению исследований посвящено значительное число работ. И хотя это отдельный серьезный разговор мы все же рассмотрим несколько простейших оптимизационных процедур, хорошо апробированных на практике.

Первая процедура – определение направления трансформации рангового видового распределения. Она основывается на понятии об идеальном распределении (рис. 5.5), которое на рисунке обозначено цифрой 2. Единицей обозначено реально полученное в результате анализа техноценоза ранговое видовое распределение. Здесь Λ – это количество видов, а r в – видовой ранг (см. рис. 5.2).

Как показывает многолетний опыт исследования техноценозов из различных областей человеческой деятельности, наилучшим является такое состояние техноценоза, при котором в аппроксимационном выражении рангового видового распределения

(5.13)

параметр β находится в пределах

0,5 ≤ β ≤ 1,5.(5.14)

Кстати, закон оптимального построения техноценозов гласит, что оптимальное состояние достигается при β = 1. Однако это распространяется лишь на некий идеальный техноценоз, функционирующий абсолютно изолированно. Таких на практике не бывает, поэтому можно пользоватьсяинтервальной оценкой (5.14). На рисунке 5.5 для лучшего понимания показана идеальная кривая (с β = 1), а не полоса, удовлетворяющая требованию (5.14).

Из рисунка видно, что реальное распределение резко отличается от идеального, причем кривые пересекаются в точке R . Отсюда вывод: среди видов техники с рангамиr в < R следует увеличивать разнообразие, и одновременно там, где r в > R , наоборот, проводить унификацию, что на рисунке проиллюстрировано стрелками. Такой представляется первая оптимизационная процедура.

Вторая процедура – устранение аномальных отклонений на видовом распределении. Как уже отмечалось, на видовом распределении техноценоза можно выделить области максимальных аномальных отклонений (они показаны, хотя и весьма условно, на рисунке 5.6).

Здесь мы отчетливо видим как минимум три ярко выраженные аномалии, где реально полученные в ходе анализа эмпирические точки явно отклоняются от плавной аппроксимационной кривой. При этом кривая строится, как мы уже знаем, методом наименьших квадратов по данным табулированного рангового распределения и описывается выражением

(5.15)

где Ω – количество видов (см. рис. 5.4.);

х – непрерывный аналог мощности популяции;

ω 0 и α – параметры распределения.

После выявления аномалий на видовом распределении по тому же табулированному распределению определяются виды техники, «ответственные» за аномалии, и намечаются первоочередные мероприятия по их устранению. При этом отклонения вверх от аппроксимирующей кривой свидетельствуют о недостаточной унификации, а вниз – наоборот, об избыточной.

Следует заметить, что первая и вторая процедуры взаимосвязаны, причем первая показывает стратегическое направление изменения видовой структуры техноценоза в целом, а вторая – помогает локально выявить «самые больные» зоны в номенклатуре (перечне видов) техники.

Третья процедура – верификация номенклатурной оптимизации техноценоза (рис. 5.7). Очевидно, что в любом реальном техноценозе номенклатурная оптимизация, осуществляемая в рамках первой и второй процедур, может быть выполнена лишь в течение длительного промежутка времени. Кроме того, реализация на практике предлагаемых мероприятий может натолкнуться на ряд трудностей субъективного характера. Поэтому весьма полезной представляется дополнительная оптимизационная процедура – верификация (рис. 5.7).

Для ее осуществления требуется статистическая информация о состоянии техноценоза за обозримый промежуток времени. Это позволит исследователю построить зависимость параметра β рангового видового распределения во времени t . Предположим, что эта зависимость получилась такой, как показано на рисунке 5.7. То есть, видовой состав техноценоза со временем трансформировался, изменялся и параметр β . С зависимостью β(t) на одном графике необходимо сопоставить зависимость E(t) , где Е – некоторый ключевой параметр, характеризующий функционирование техноценоза в целом, например – прибыль. В случае если дополнительный корреляционный анализ покажет, что взаимообусловленность Е и β значима, сопоставление их временных зависимостей позволит сделать целый ряд чрезвычайно важных выводов. В качестве примера на рисунке 5.7 стрелками показан способ определения оптимального значения β опт .

Четвертая процедура – параметрическая оптимизация (рис. 5.8). Строго говоря, первые три оптимизационные процедуры относятся к так называемой номенклатурной оптимизации. Четвертая, хотя и рассматривается в данном случае как дополнительная к предыдущим, принадлежит к несколько другой сфере и называется, как уже указано, параметрической. Дадим точные определения.

Под номенклатурной оптимизацией техноценоза понимается целенаправленное изменение набора видов техники (номенклатуры), устремляющее видовоераспределение техноценоза по форме к каноническому (образцовому, идеальному). Параметрическая оптимизация – целенаправленное изменение параметров отдельных видов техники, приводящее техноценоз к более устойчивому, и, следовательно, эффективному состоянию.

К настоящему времени теоретически показано, что между процедурами номенклатурной и параметрической оптимизации существует взаимосвязь, когда одну процедуру без другой осуществить практически невозможно. Обе они фактически являются разными сторонами одного процесса. Существует концепция оптимизации техноценозов,по которой номенклатурная оптимизации задает конечное состояние техноценоза, к которому она устремлена, а параметрическая – определяет детальный механизм этого процесса. Не будем углубляться в суть этой концепции (по причине ее достаточной сложности), ограничимся лишь предельно упрощенным вариантом параметрической оптимизационной процедуры.

Ранее мы ознакомились с процессом получения рангового параметрического распределения. Рассмотрим абстрактный пример распределения техноценоза по параметру W (рис. 5.8). Из закона оптимального построения следует, что для любого техноценоза может быть теоретически задана форма так называемого идеального рангового параметрического распределения. На рисунке оно изображено кривой, обозначенной цифрой 2 (реальное – 1). Хорошо видно, что эти два распределения значительно различаются, что свидетельствует об упущениях в научно-технической политике, проводимой при формировании техноценоза.

Если применять ставшую уже традиционной для нас гиперболическую форму распределений

(5.16)

гдеr – параметрический ранг;

W 0 и β – параметры распределения,

то идеальное распределение будет задаваться интервальной оценкой требований к параметру β , причем

0,5 £ β £ 1,5.(5.17)

Исходя из тех же соображений, которые приведены в комментариях к выражению (5.14), в данном случае интервальную оценку заменяют конкретным значением β = 1 . Поэтому на рисунке 5.8 вместо полосы изображена кривая 2.

Суть параметрической оптимизации в данном случае сводится к тому, что после выявления на видовом распределении видов техники, «ответственных» за аномальные отклонения (вторая процедура оптимизации), определяются параметрические ранги этих видов. На рисунке 5.8 подобному виду соответствует точка с координатами (r т, W 1) . Далее по оптимальной кривой 2 определяется значение W 2 , соответствующее той же абсциссе (r т). Очевидно, что W 2 может интерпретироваться как своего рода требование к разработчикам видов техники по данному, конкретному параметру (направление оптимизации показано на рисунке стрелкой). Если в ранговых распределениях провести подобную операцию по всем основным параметрам, можно вести речь о задании комплекса технических требований на разработку или модернизацию видов технических изделий.

Ко всему сказанному имеется ряд замечаний. Во-первых,полученные технические требования не обязательно должны реализовываться напрактике путем разработки новых или модернизации эксплуатируемых видов. Достаточно найти соответствующий требованиям уже существующий образец (если, конечно, он где-тоимеется) и включить его в номенклатуру взамен того, который нас не удовлетворяет.

Во-вторых, что чрезвычайно важно понять, в техноценозе существует глубокая, фундаментальная взаимосвязь между численностью видов техники (объемом популяции) и уровнем их основных видообразующих параметров. Поэтому оптимизация может осуществляться не только за счет изменения параметров, но также и путем изменения численности особей данного вида в техноценозе. Выбор пути целиком зависит от конкретной ситуации. То, как это делается, мы здесь опускаем и адресуем интересующихся к специальной литературе.

И, наконец, последнее замечание по четвертой процедуре оптимизации. В ее простейшем варианте, представленном здесь, могут возникнуть чисто технические трудности с определением параметрического ранга r т . Дело в том, что по табулированному распределению мы можем напрямую определить лишь видовой ранг, т.к. в таблице приводится перечень видов. А на ранговых параметрических распределениях ранжируются все особи. Повторимся и отметим, что теоретически между параметрическим и видовым рангами существует фундаментальная взаимосвязь, однако она очень сложна. Выйти из этого положения можно следующим образом. После выявления вида, требующего параметрической оптимизации (а это делается по видовому распределению), определяется его видовой ранг. Причем по видовому распределению определяется лишь численность этого вида в техноценозе, а уже потом, с учетом численности, по ранговому видовому распределению определяется видовой ранг (и собственно марка данного вида техники). Если одной и той же численностью обладает несколько видов, то принимать решение относительно того, какой из них подвергать оптимизации, должен исследователь. Зная видовой ранг, по табулированному распределению определяем значение параметра, соответствующее данному виду. Откладываем его на ранговом параметрическом распределении (на рис. 5.8 это значение W 1 ) и далее поступаем в соответствии с предложенной выше процедурой.

Мы завершаем изложение общих вопросов рангового анализа. В данной лекции были предложены сравнительно простые методики, и это естественно, т.к. начинать постижение техноценологического метода надо «от простого». Однако опыт многолетних исследований реальных техноценозов свидетельствует, что даже сравнительно несложные методы оказываются эффективными и весьма полезными. Есть основание даже говорить, что для определенного класса задач техноценологический метод вообще и ранговый анализ в частности являются единственными корректными методами исследования и оптимизации.

Для моделирования структуры электропотребления предприятия используются ранговые распределения, а для моделирования структуры установленного и ремонтируемого электрооборудования - видовые распределения.  


Ранговые распределения. К ранговым относятся такие распределения, в которых основным признаком является электроемкость всех видов выпускаемой продукции .  

Распределение электроемкостей всех видов продукции, выпускаемых на одном конкретном предприятии, относится к ранговому распределению. Параметром рангового распределения является ранговый коэффициент. Можно получить кривые рангового распределения и определить ранговые коэффициенты за периоды отчетного времени (по кварталам, полугодиям или по годам). Если с течением времени ранговый коэффициент остается постоянным, то это означает, что структура выпускаемой продукции и структура электропотребления с течением времени не изменяются. Возрастание рангового коэффициента показывает, что на предприятии с годами увеличивается разнообразие выпускаемой продукции и разница в расходах электроэнергии на выпуск различных видов.  

Если для каждого вида продукции многономенклатурного производства рассчитать электроемкость как отношение годового электропотребления к объему выпуска этого вида, то в целом по предприятию эти величины подчиняются ранговому распределению. Полученные параметры рангового распределения по годам имеют достаточно стабильную тенденцию к увеличению. Возрастание рангового коэффициента показывает, что на предприятии с годами увеличиваются разнообразие выпускаемой продукции и разница в расходах электроэнергии на выпуск различных видов.  

Совокупность кривых рангового распределения представляет собой поверхность. Анализ структурно -топологической динамики (траектории движения особи по кривой рангового распределения) на этой поверхности дает временной ряд электроемкости каждого исследуемого вида продукции, что представляет интерес с точки зрения возможности прогноза параметров электропотребления. Можно сделать вывод о наличии жесткой корреляционной связи между годовым электропотреблением многономенклатурного производства, структурой выпускаемых изделий и видовым разнообразием выпускаемой продукции .  

Структура установленного и ремонтируемого оборудования. Ранговые и видовые распределения  

Какие распределения относятся к ранговым  

Вариант 2 (при числе вариантов более 20). На первом этапе респондент раскладывает предложенные варианты на две-три группы 1 - подходят, 2 - не подходят, третью группу могут составлять варианты, которые респондент затрудняется отнести к другим группам. Если при первом распределении в группе подходят остается больше 10-12 позиций, то эту группу респонденту предлагается разделить еще раз по принципу точно подходят - возможно подходят. После выделения подходящих вариантов респондент должен провести прямое ранжирование, отсортировав варианты от лучшего к худшему. В соответствии с результатами выбора присваиваются ранговые значения по каждому респонденту, предпочтительно в обратном порядке (лучшее значение - 10, следующее - 9, худшее - 1 при более чем 10 выборах последним выборам всем присваивается значение 1 .  

Как уже говорилось, для характеристики формы распределения вариационного ряда применяют ранговые показатели. Под этим понимают такие единицы исследуемого массива, которые занимают определенное место в вариационном ряду (например, десятое, двадцатое и т.д.). Они получили название квантилей или градиентов. Квантили в свою очередь подразделя-  

Почему ранговая статистика Данн (dt) для проверки контрастов (см. уравнение (41)) требует таблиц нормального распределения , а не -критерия  

Непараметрические методы. Непараметрические методы статистики , в отличие от параметрических, не базируются на каких-либо предположениях о законах распределения данных3. В качестве непараметрических критериев связи переменных часто используют коэффициент ранговой корреляции Спирмена и коэффициент ранговой корреляции Кендалла.  

Гистограмма - графическое изображение статистических распределений какой-либо величины по количественному признаку . Гистограмму (гр. histos - ткань) удобно строить сверху, откладывая по оси абсцисс соответствующие факторы, а по оси ординат - их ранговые суммы. Гистограмма может показать спады, по которым целесообразно сгруппировать факторы по степени их влияния на изучаемый показатель.  

Изложенные ценологические представления могут быть положены в основу изменения организации системы 111 IF на промышленном предприятии (в цехе). В этом случае применяется не видовое распределение установленного электрооборудования, а представление всего перечня, например, электрических машин в ранговой по параметру форме Н-распределения. Осуществляется это следующим образом. Все множество установленных машин ранжируется по их значимости (важности) в техническом или ином процессе. Каждой машине присваивается свой ранг (номер). Первый ранг присваивается машине, которая в наибольшей степени определяет производственный процесс . Второй - следующей по важности машине и т.д., так что последние ранги достанутся машинам, отказ которых не влияет, точнее, влияет крайне незначительно, на производственную и иные виды деятельности предприятия. Операция присвоения ранга не требует особой точности, так что данная машина может в данном ранговом списке попасть в несколько иное место.  

Воспользуемся фактом х2 (12)-распределенности случайной величины т (п - 1) W (т), который имеет место приближенно) в случае, если в исследуемой генеральной совокупности множественная ранговая связь отсутствует. Тогда критерий сводится к проверке неравенства (2.18). Задавшись уровнем значимости критерия а = 0,05, находим из табл. П.4 значение 5%-ной точки х2-распределения с 12 степенями свободы Х ОБ (12) = 21,026. В то же время т (п - I) W (т) = - 28-12-0,08 - 27.  

Прежде всего обратите еще раз внимание, что распределение частот всегда симметрично. Данные табл. 6.9 показывают, что соответственно симметричность частот отражает симметричность количественной определенности коэффициента ранговой корреляции по инверсиям Кинв.  коэффициентов корреляции Спирмена (р) и Кендэлла (Т). Эти методы применимы не только для качественных, но и для количественных показателей , особенно при малом объеме совокупности, так как непараметрические методы ранговой корреляции не связаны ни с какими ограничениями относительно характера распределения признака.  

После получения последовательности распределений ft(P) возникает задача изучения процесса перехода между ними, т.е. мобильности регионов по ценам. Как отмечено в обзоре Fields, Ok (2001), само понятие мобильности чётко не определено, посвящённая мобильности литература не даёт унифицированного описания анализа (как нет и сложившейся терминологии). Тем не менее, в экономической и социологической литературе есть согласие относительно двух основных концепций мобильности. Первая - относительная (или ранговая) мобильность, связанная с изменениями упорядоченности, в нашем случае, регионов по уровню цен. Вторая концепция - абсолютная (или количественная) мобильность, связанная с изменением самих уровней цен в регионах. В дальнейшем анализе использованы обе эти концепции.  

Другие процедуры. В рассматривается процедура, основанная на ранговой статистике Стила для сравнений экспериментальной и контрольной средних, обсуждавшихся "ранее. Эта альтернативная процедура также предполагает стохастически упорядоченные распределения. Для этого класса распределений про-цедура менее эффективна она более эффективна для частного случая- для распределений, отличающихся только сдвигом (см.

Последовательный ранговый метод Хоула с исключением для стохастически упорядоченных распределений. Стохастически упорядоченные распределения охватывают распределения, различающиеся только сдвигом, но не нормальные распределения с различными дисперсиями. Мы не знаем, чувствителен ли метод к отклонениям от предположения о стохастической упорядоченности.  

РАНГОВЫЙ АНАЛИЗ КАК МЕТОД ИССЛЕДОВАНИЯ

Ульяновский государственный университет

К одному из наиболее общих законов развития биологической, технической, социальной систем относится закон рангового распределения. Теория рангового анализа ((РА) была перенесена из биологии и разработана для техноценозов более 30 лет назад профессором МЭИ и его школой (www kudrinbi . ru ) . Как затем оказалось, этот метод применим и к физическим, и к астрономическим , и к социальным системам. Методики построения ранговых распределений и их последующее использование в целях оптимизации ценоза составляют основной смысл рангового анализа (ценологического подхода) , содержание и технология которого представляют собой, по сути, новое направление, сулящее большие практические результаты. Целью настоящей работы является описание метода рангового анализа. Новым является включение в РА известного в физических исследованиях «метода спрямления» полученного исследователем экспериментального графика (построение и спрямление в соответствующих координатах) для определения вида его математической зависимости и вычисления его конкретных параметров.

1. Понятийный аппарат ценологической теории. Закон рангового распределения .

Ценозом называют многочисленную совокупность особей.

Количество особей в ценозе определяет мощность популяции. Такая терминология пришла из биологии, из теории биоценозов. «Биоценоз» – это сообщество. Термин биоценоз , введённый Мёбиусом (1877), лёг в основу экологии как науки. Профессор МЭИ перенес понятия «ценоз», «особь», «популяция», «вид» а из биологии в технику: в технике «особи» - отдельные технические изделия, технические параметры, а многочисленную совокупность технических изделий (особей) называют техноценозом . определяет техническую особь как выделенный, далее неделимый элемент технической реальности, обладающий индивидуальными особенностями и функционирующий в индивидуальном жизненном цикле . Вид – основная структурная единица в систематике особей. Вид – группа особей, имеющих качественные и количественные характеристики, отражающие сущность этой группы. Вид в технике именуется маркой или образцом техники и изготавливается по одной конструкторско-технологической документации (трактор "Белорусь", сапёрная лопата, автомобиль ЗИЛ-131 и др.) .


В социальной сфере «особи» - это люди, организованные социальные группы людей (классы, учебные группы) а также социальные системы (учреждения), например, образовательные – школы. Тогда по аналогии, социоценозом будем называть любую совокупность социальных особей . Каждая особь представляет собой структурную единицу ценоза. Особью может быть любая единица из социальной сферы, это зависит от масштабов объединения и от того, что объединяется в ценоз. Например класс, учебная группа - это социоценоз, состоящий из особей – учащихся. Тогда мощность популяции – это количество учащихся в классе. Школа – это тоже социоценоз, состоящий из особей - отдельных структурных единиц – классов. Здесь мощность популяции – количество классов в школе. Совокупность школ – это ценоз более крупного масштаба, где особью, структурной единицей данного ценоза является школа .

В систематике средних общеобразовательных учреждений можно выделить следующие виды: средние общеобразовательные школы, лицеи, гимназии, частные школы. Эти виды отличаются по содержанию программ, задачам и составляют видовой ценоз , где каждый вид уже является особью .

Под ранговым распределением понимается распределение, полученное в результате процедуры ранжирования последовательности значений параметра, поставленных соответственно рангу. Ранжирование - процедура упорядочения объектов по степени выраженности какого-либо качества. Особь – это объект ранжирования. Ранг - это номер особи по порядку в некотором распределении. По, закон рангового распределения особей в техноценозе (Н-распределение) имеет вид гиперболы :

Где W - ранжируемый параметр особей; r – ранговый номер особи (1,2,3….); А – максимальное значение параметра лучшей особи с рангом r =1, т. е. в первой точке (или коэффициент аппроксимации); β – ранговый коэффициент, характеризующий степень крутизны кривой распределения (наилучшим состоянием техноценоза, например, является такое состояние, при котором параметр β находится в пределах 0,5 < β < 1,5).

Если ранжируется какой-либо параметр ценоза (системы), то распределение называется ранговым параметрическим .

В качестве ранжируемых параметров в техноценозах выступают технические параметры (физические или технические величины), характеризующие особь, например, размер, масса, мощность потребления, энергия излучения и т. д. В социоценозах, в частности педагогических ценозах, ранжируемыми параметрами могут быть успеваемость, рейтинг в баллах участников олимпиад или тестирования; число учащихся, поступивших в вузы и так далее, а ранжируемыми особями – сами учащиеся, классы, учебные группы, школы и так далее.

Если в качестве параметра рассматривается мощность популяции (численность особей, составляющий вид в социоценозе), то в этом случае распределение называется ранговым видовым . Таким образом, в ранговом видовом распределении ранжируются виды. То есть особью является вид.

2. Методика применения рангового анализа

Ранговый анализ включает следующие этапы-процедуры :

1. Выделение ценоза.

2. Задание видообразующих параметров. Видообразующими па­раметрами техники могут выступать стоимость, энергетическая надежность, численность обслуживающего персонала, массогабаритные показатели и т. д.


3. Параметрическое описание ценоза . Внести в базу данных ценоза конкретные значения параметров. Это статистическая работа значительно облегчается применением компьютера. Работа по созданию информационной базы ценоза завершается после того как будет создана электронная таблица (база данных), которая вбирает в себя систематизированную информацию о значениях видообразующих параметров отдельных особей, входящих в социоценоз.

4. Построение табулированного рангового распределения Табулированное ранговое распределение по форме представляет собой таблицу из двух столбцов: параметров особей W выстроенных по рангу и рангового номера особи r (параметрического или видового).

Первый ранг присваивается особи, имеющей максимальное значение параметра, второй – особи, имеющей наибольшее значение параметра среди особей, кроме первой, и так далее.

5. Построение графического рангового параметрического распределения или графического рангового видового распределения. Параметрическая ранговая кривая имеет вид гиперболы, причём по оси абсцисс откладывается ранговый номер r, по оси ординат – исследуемый параметр W. График рангового видового распределения есть совокупность точек: каждой точке графика соответствует определенная особь или вид ценоза. При этом абсцисса на графике – ранг, а ордината – параметр особей (параметрическое распределение) или число особей, которым этот вид представлен в ценозе (ранговое видовое распределение). Все данные берутся из табулированного распределения.

6. Аппроксимация распределений. Суть метода заключается в отыскании таких параметров аналитической зависимости, которые минимизируют сумму квадратов отклонений реально полученных в ходе рангового анализа социоценоза эмпирических значений y от значений, рассчитанных по аппроксимационной зависимости. Следует отметить, что произвести аппроксимацию и определить параметры выражения можно с помощью компьютерных программ. Находятся параметры кривой распределения: А, b. Как правило, для техноценозов 0,5.< β < 1,5.

7. Оптимизация ценоза.

Оптимизация является одной из сложнейших операций ценологической теории. Этому направлению исследований посвящено значительное число работ . Процедура оптимизации системы (ценоза) состоит в сравнении идеальной кривой с реальной, после чего делают вывод: что практически нужно сделать в ценозе, чтобы точки реальной кривой стремились лечь на идеальную кривую. Рассмотрим несколько простейших оптимизационных процедур для ценозов, широко апробированных нами на практике. Рассмотрим этап 7 подробнее.

Как правило, реальное Н-распределение отличается от идеального следующими отклонениями:

1) некоторые экспериментальные точки выпадают из идеального распределения;

2) экспериментальный график не является гиперболой;

3) экспериментальная кривая, в целом, имеет характер Н-распределения но по сравнению с теоретической, имеют «горбы», «впадины» или «хвосты».

4) реальная гипербола лежит ниже идеальной гиперболы, или наоборот, реальная гипербола лежит выше идеальной.

Процедура оптимизации любого ценоза (определение способов, средств и критериев его улучшения) направлена на устранение аномальных отклонений на ранговом распределении. После выявления аномалий на графическом распределении по табулированному распределению определяются особи, «ответственные» за аномалии, и намечаются первоочередные мероприятия по их устранению.

Оптимизация ценоза осуществляется двумя путями :

1. Номенклатурная оптимизация - целенаправленное изменение численности ценоза (номенклатуры), устремляющее видовое распределение ценоза по форме к каноническому (образцовому, идеальному). В биоценозе – стае это изгнание или уничтожение слабых особей, в учебной группе это отсев неуспевающих.

2. Параметрическая оптимизация - целенаправленное изменение (улучшение) параметров отдельных особей, приводящее ценоз к более устойчивому и, следовательно, эффективному состоянию. В педагогическом ценозе – учебной группе (классе) – это работа с неуспевающими – улучшение параметров особей.

Чем ближе экспериментальная кривая распределения приближается к идеальной кривой вида (1), тем устойчивее система. Любые отклонения свидетельствуют о том, что нужна либо номенклатурная, либо параметрическая оптимизация. Отклонения от идеального Н-распределения (гиперболы) представляются в виде выпадающих из графика точек, «хвостов» «горбов», «впадин», а также вырождение гиперболы в прямую или другие графические зависимости.

На наш взгляд методика применения рангового анализа разработана недостаточно. В частности, определение параметров ранговой системы осуществляется, в основном, методом аппроксимации экспериментальных кривых с помощью компьютерных технологий. Метод спрямления, широко используемый физиками-исследователями, в исследованиях ценозов методом рангового анализа не применяется.

Нами дополнена методика рангового анализа этапом спрямления графического рангового Н-распределения в двойных логарифмических координатах (дополнение этапа 6 или выделение отдельного этапа между 6 и 7). Тангенс угла наклона прямой к оси абсцисс определяет параметр β.

Рассмотрим этот этап подробнее для общего случая – гиперболе, смещённой вверх по оси ординат на величину В.

3. Аппроксимация гиперболы математической зависимостью методом спрямления (рис. 1, а, б).

Применение метода спрямления к гиперболе, смещённой вверх относительно оси ординат (рис.1, а) подробно описана в работе .

W Ось У или ln (W-В)

https://pandia.ru/text/80/082/images/image004_23.gif" height="177">
https://pandia.ru/text/80/082/images/image013_10.gif" width="146 height=2" height="2">

1 r ln r1 ось х

Рис. 1. Гипербола (а) и «спрямленная» гиперболическая зависимость в двойном логарифмическом масштабе (б)

Исследуем функцию вида:

W = В + А/ r β , (2)

где В – постоянная: при r, стремящемуся к бесконечности, W= В.

Исследование включает следующие этапы.

1. Перенесём постоянную В в левую часть уравнения

W – В = А/ r β (2а)

2. Прологарифмируем зависимость (2а):

Ln (W – В) = lnA – β ln r (3)

3. Обозначим:

Ln(W – В) = у ; LnА = b = const; Ln r = х . (4)

4. Представим функцию (3) с учётом (4) в виде:

У = b – β х (5)

Уравнение (5) – это линейная функция вида рис.1,б. Только по оси ординат откладывается Ln(W – В), а по оси абсцисс - Ln r.

5. Составим таблицу экспериментальных значений ln (W-В) и ln r

Название особей

(объектов ранжирования)

6. Построим экспериментальный график зависимости

ln (W– В) = f (ln r).

7. Проведём линию спрямления таким образом, чтобы большинство точек легло на прямую линию и оказалось вблизи неё (рис. 1,б).

8. Найдём коэффициент β по тангенсу угла наклона прямой к оси абсцисс из графика рис. 1, б, рассчитав его по формуле:

β = tg α = (b – b1) : ln r1 (6)

9. Рассчитаем коэффициент В, используя формулу (2). Из (2) следует, чт:

При r ∞, W = В

10. Найдём значение величины А из графика, используя равенство (2а):

при r = 1 , W – В = А, но W = W1 ,

Следовательно:

Где W1 – значение параметра W с рангом r = 1.

11. Совместная работа с табулированным и с графическим распределениями по этапам:

Нахождение аномальных точек по графику;

Определение их координат и их идентификация с особями по табулированному распределению;

Анализ причин аномалий и поиск способов их устранения.

Примечание

Если В=0 то гипербола и спрямлённая зависимость имеют вид (рис.2,а, б):

W ln Whttps://pandia.ru/text/80/082/images/image016_8.gif" height="135">

А

· Коэффициент β определяется по формуле:

β = tg α = lnA: ln r

· Коэффициент А определяется из условия:

Выводы

Описанная методика может быть применена к исследованию различных ценозов: физических, технических, биологических, экономических социальных и пр.

Этап 7 аппроксимации и нахождения параметров распределения рангового анализа дополнен методом «спрямления», который можно применять как метод, альтернативный компьютерной аппроксимации (даже вручную).

Экспериментальное сравнение двух методик определения параметров гиперболического рангового распределения (компьютерной аппроксимации непосредственно экспериментального Н-распределения и метода спрямления гиперболы в двойном логарифмическом масштабе также с помощью компьютера) показало их адекватность. При этом метод спрямления имеет следующие преимущества. Во-первых, он позволяет определить более точно параметр β. Во-вторых, он более нагляден: на спрямлённом графике более явно выступают аномалии в виде точек, выпадающих из прямой.

Список литературы:

1. Кудрин библиография по технике и электрике. К 70-летию со дня рождения проф. /Составители: , . Общая редакция: . Вып.26 «Ценологические исследования». – М.: Центр системных исследований, 2004. – 236 с.

2. Кудрин в технетику. 2-е изд., перераб., доп. –Томск: ТГУ, 1993. –552 с.

3. Кудрин Б. В., Ошурков определение параметров эдлектропотребления многоменклатурных производств,– Тула. Приок. кн. изд-во, 1994. –161 с.

4. Кудрин самоорганизация. Для технариев электрики и философов //Вып. 25. «Ценологические исследования». - М.: Центр системных исследований. – 2004. – 248 с.

5. Математическое описание ценозов и закономерности технетики. Философия и становление технетики /Под ред. // Ценологические исследования. –Вып. 1-2. – Абакан: Центр системных исследований. 1996. – 452 с.

6. Кудрин раз о третьей научной картине мира. Томск. Изд-во Томск. ун-та, 2001 –76 с.

7. , Кудрин аппроксимирование ранговых распределений и идентификация техноценозов// Вып.11. «Ценологические исследования». – М.: Центр системных исследований.- 1999. – 80 с.

8. Чирков в мире машин // Вып. 14. «Ценологические исследования». – М.: Центр системных исследований. – 1999. –272 с.

9. Гнатюк построение техноценозов. Теория и практика // Вып. 9. «Ценологические исследования». – М.: Центр системных исследований. – 1999. – 272 с.

10. Гнатюк оптимального построения техноценозов. /Монография – Выпуск 29. Ценологические исследования. – М.: Изд-во ТГУ – Центр системных исследований, –2005. – 452 с. (компьютерный вариант ISBN 5-7511-1942-8). – http://www. baltnet. ru/~gnatukvi/ind. html.

11.Гнатюк анализ техноценозов // Электрика.–2000. №8. –С.14-22.

12. , В, Белов оценка электропотребления ряда образовательных учреждений // Электрика. – №5. – 2001. – С.30-35.

14. Гурина анализ образовательных систем (ценологический подход). Методические рекомендации для работников образования Вып.32. «Ценологические исследования». –М.: Технетика. – 2006. – 40 с.

15. Гурина исследования педагогических образовательных систем //Ползуновский вестник. –2004. –№3. – С.133-138.

16. Гурина анализ или Ценологический подход в образовании//Школьные технологии. – 2007. – №5. – С.160-166.

17. Гурина, -исследовательский эксперимент по физике с компьютерной обработкой результатов: лабораторный практикум. Методические рекомендации для учителей физики профильных физико-математических классов. – Ульяновск: УлГУ, 2007. – 48 с.